Chemistry of Natural Compounds, Vol. 47, No. 4, September, 2011 [Russian original No. 4, July-August, 2011]

ALLYLIC OXIDATION OF 19β ,28-EPOXY-A-*NEO*- 5β -METHYL-25-NOR- 18α -OLEAN-9-ENE

O. B. Kazakova,^{*} E. F. Khusnutdinova, A. N. Lobov, N. I. Medvedeva, and L. V. Spirikhin UDC 547.824:542.91:548.737

Allylic oxidation of 19β , 28-epoxy-A-neo- 5β -methyl-25-nor- 18α -olean-9-ene by ozone produced 19β , 28-epoxy-A-neo- 5β -methyl-25-nor- 18α -olean-9-en-1-one.

Keywords: betulin, allobetulin, ozonolysis, oxidation, antitumor activity.

The oleanane triterpenoid allobetulin (1) is an available betulin derivative [1]. Allobetulin is known to exhibit moderate inhibiting activity against type B flu virus [2] whereas 28-oxoallobetulone is an effective inhibitor of type A flu virus replication [3]. Derivatives of allobetulin have manifested antifeedant activity against larvae of *Heliothis zea* [4] and *Leptinotarsa decemlineata* [5]. The antitumor activity of allobetulin derivatives is practically unstudied [6].

Herein we report the synthesis of a new allobetulin derivative that is of interest for modifications on rings A and B. Allobetulin (1) was dehydrated to 19β ,28-epoxy-A-*neo*-18 α -olean-3(5)-ene (2), which was then isomerized into 19β ,28-epoxy-A-*neo*-5 β -methyl-25-nor-18 α -olean-9-ene (3) in 75% yield by the action of acetylchloride upon refluxing in CH₃CN. Reaction with ozone caused allyl oxidation of 3 to form 19β ,28-epoxy-A-*neo*-5 β -methyl-25-nor-18 α -olean-9-en-1-one (4), the structure of which was confirmed by NMR spectroscopy. Thus, the ¹³C NMR spectra exhibited 30 resonances that were assigned using DEPT spectra [7] to quaternary, methine, methylene, and methyl groups. Resonances of 8 quaternary C atoms, 5 methines, 10 methylenes, and 7 methyls were found. Resonances of carbonyl C-1 ($\delta_{\rm C}$ 208.13 ppm), methine C-19 (87.93), and methylene C-28 (71.21) C atoms, which were oxygenated, had characteristic chemical shifts.

i. PCl₅, CHCl₃, 20°C; ii. AcCl, CH₃CN, 82°C; iii. O₃, CH₂Cl₂, -40°C

COSY and HETCOR spectra were analyzed in order to establish the positions of resonances for protonated C atoms and their protons in 4. According to COSY spectra, the methylene protons in the α -position relative to the carbonyl (H_{ax}-2, $\delta_{\rm H}$ 2.06 ppm and H_{eq}-2, $\delta_{\rm H}$ 2.41 ppm) formed an ABX-system with the H-3 proton ($\delta_{\rm H}$ 1.39). The spin–spin coupling constant was 12.3 Hz, indicating a *trans*-diaxial coupling and an axial position for H-3. Therefore, the isopropyl group occupied the equatorial position. Correlation peaks in the HETCOR spectrum H_{ax}-2(H_{eq}-2)/C-2 and H-3/C-3 and cross peaks of H-3 with the methine proton of the isopropyl group H-4 ($\delta_{\rm H}$ 1.69) in the COSY spectrum enabled the structure and substitution stereochemistry of five-membered ring A to be found. The chemical shifts of quaternary C atoms on the C-9 ($\delta_{\rm C}$ 156.10 ppm) and C-10 ($\delta_{\rm C}$ 139.76) double bond corresponded with its position in ring B [8].

Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 450054, Ufa, Prosp. Oktyabrya, 71, e-mail: obf@anrb.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2011, pp. 513–515. Original article submitted November 30, 2010.

Cell line	Percent of growth	Cell line	Percent of growth
Lung cancer	-	Leukemia	
A549/ATCC	88.82	CCRF-CEM	104.55
EKVX	107.53	HL-60(TB)	105.21
HOP-62	119.79	K-562	106.61
NCI-H226	102.49	MOLT-4	94.22
NCI-H322M	116.36	RPMI-8226	106.72
NCI-H23	102.55	SR	_
NCI-H460	107.00	Kidney cancer	
NCI-H522	100.45	786-0	105.25
HOP-92	92.75	A498	110.63
Colon cancer		ACHN	107.87
COLO 205	118.66	CAKI-1	90.91
HCC-2998	106.96	RXF 393	112.90
HCT-116	114.16	SN12C	99.48
HCT-15	111.78	TK-10	101.91
HT29	100.61	UO-31	106.19
KM12	102.23	Melanoma	
SW-620	105.86	LOX IMVI	89.06
Breast cancer		MALME-3M	92.22
MCF7	94.96	M14	96.02
MDA-MB-231/ATCC	99.06	MDA-MB-435	95.77
HS 578T	-	SK-MEL-2	99.07
BT-549	-	SK-MEL-28	106.01
T-47D	115.86	SK-MEL-5	103.27
MDA-MB-468	105.73	UACC-257	97.17
Ovary cancer		UACC-62	96.90
IGROV1	111.50	Prostate cancer	
OVCAR-3	116.90	PC-3	86.16
OVCAR-4	109.24	DU-145	101.55
OVCAR-5	102.38	CNS cancer	
OVCAR-8	101.38	SF-268	95.04
NCI/ADR-RES	107.78	SF-295	104.80
SK-OV-3	111.52	SF-539	105.46
		SNB-19	101.53
		SNB-75	—
		U251	100.83

TABLE 1. Antitumor Activity in vitro of 3 at Concentration 10⁻⁵ M against 60 Lines of Human Cancer Cells

The *in vitro* antitumor activity of **3** was studied. The cytotoxicity was determined against 60 cell lines of nine different human tumors (lung, colon, CNS, ovary, kidney, prostate, breast, leukemia, and melanoma) at the National Cancer Institute (USA) using the published method [9–12]. Preliminary testing of the activity was carried out in cell culture medium at a final concentration of 10^{-5} M for 48 h, after which the growth of the treated cells was evaluated against untreated control cells. Table 1 presents results for the growth of treated cells against control cells (negative values correspond to cell death). According to Table 1, **3** did not exhibit antitumor activity.

EXPERIMENTAL

PMR and ¹³C NMR spectra were recorded in $CDCl_3$ on Bruker AM-300 and AMX-300 pulsed spectrometers at operating frequency 300 (¹H) and 75 (¹³C) MHz with 5-mm QNP probes at constant sample temperature 298 K. Chemical shifts in ¹³C NMR and PMR spectra are given in ppm vs. the resonance of TMS internal standard. The delay between pulse sequences was set to achieve full relaxation. Additional zeroes and multiplication of the Fourier-transform of the spectrum by an exponential function (lb = 0.1 Hz for ¹H and 1 Hz for ¹³C) were applied in order to increase the digital resolution. ¹³C NMR spectra with proton-decoupling (WALTZ-16) were recorded with spectral window 18 kHz, 64k points, exciting pulse (30°)

length 2.2 μ s, relaxation delay 1.5 s, and 1500-5000 scans. ¹³C NMR spectra were edited based on DEPT-90 and DEPT-135 experiments [7]. The pulse length and regenerating transverse magnetization were set at 6 μ s (DEPT-90) and 9 μ s (DEPT-135); the refocusing delay 1/2J = 3.6 ms. A total of 64k points were accumulated during 1024 scans with spectral window 18 kHz and exponential line broadening 1 Hz.

Two-dimensional ${}^{1}\text{H}{-}^{1}\text{H}$ COSY spectra [13, 14] were recorded using standard modes of multi-pulse sequences in the instrument software. The matrix size was 2k for 1024 experiments with spectral window 3 kHz. A sinusoidal bell-shaped weighting function for F1 and F2 projections (ssb = 0) was used for the spectrum magnitude. HETCOR heteronuclear correlation spectra [15] (matrix size 1k for 256 experiments, 18 kHz for F2-projection and 3 kHz for F1) had a refocusing delay that was optimized for observation of J_{CH} = 145 Hz.

Melting points were determined on a Boetius microstage. Optical rotation was measured on a Perkin–Elmer 241 MS polarimeter (Germany) in a 1-dm tube. TLC was performed on Sorbfil plates (ZAO Sorbpolimer, Russia) using CHCl₃:EtOAc (40:1). Compounds were detected using H_2SO_4 solution (10%) with subsequent heating at 100-120°C for 2-3 min. Allobetulin (1) was obtained as before [16].

19β**,28-Epoxy-A**-*neo*-**18**α-**olean-3(5)-ene (2).** A solution of **1** (0.84 g, 2 mmol) in anhydrous CHCl_3 (40 mL) was treated with PCl_5 (1.04 g, 5 mmol) and stirred at room temperature for 2 h (TLC monitoring). The organic layer was separated, washed with H₂O, dried over CaCl₂, and evaporated in vacuo. The solid was crystallized from EtOH, R_f 0.80, yield 0.67 g (82%), mp 211–213°C, $[\alpha]_D^{20}$ +58° (*c* 1.00, CHCl₃) {lit. [17] mp 216-218°C, $[\alpha]_D^{22}$ +48.2° (*c* 1.31, CHCl₃)}, C₃₀H₄₈O (MW 424.7).

PMR spectrum (δ, ppm, J/Hz): 0.79, 0.85, 0.86, 1.00, 1.18 (15H, 5s, 5CH₃), 0.93 (3H, d, J = 6.8, 24-CH₃), 0.97 (3H, d, J = 6.8, 23-CH₃), 1.00-2.20 (23H, m, CH, CH₂), 2.65 (1H, septet, J = 6.8, H-4), 3.46 and 3.81 (2H, both d, J = 7.8, H-28), 3.55 (1H, s, H-19).

¹³C NMR spectrum (δ, ppm): 13.5, 15.1, 15.7, 19.4, 22.8, 23.3, 23.5, 24.6, 26.3, 26.4, 26.7, 28.3, 28.9, 32.8, 33.7, 34.3, 36.3, 36.9, 39.8, 40.4, 40.7, 41.6, 44.5, 42.2, 46.8, 50.1, 71.3 (C-28), 87.9 (C-19), 136.1 (C-5), 139.8 (C-3).

19β**,28-Epoxy-A**-*neo*-5β-methyl-25-nor-18α-olean-9-ene (3). A solution of **2** (0.43 g, 1 mmol) in anhydrous CH₃CN (15 mL) was treated dropwise with freshly distilled AcCl (1 mL), refluxed for 5 h, and treated with cold water (100 mL). The resulting precipitate was filtered off, washed with H₂O until neutral, dried in air, and crystallized from hexane. Yield 0.32 g (75%), mp 148–150°C, $[\alpha]_D$ +45° (*c* 1, CHCl₃) (lit. [18] mp 147–149°C), C₃₀H₄₈O (MW 424.7).

PMR spectrum (δ , ppm, J/Hz): 0.79, 0.81, 0.82, 0.94, 1.12 (15H, 5s, 5CH₃), 0.88 (3H, d, J = 6.9, 24-CH₃), 0.95 (3H, d, J = 6.9, 23-CH₃), 1.13-2.31 (24H, m, CH, CH₂), 3.45 and 3.80 (2H, both d, J = 7.5, H-28), 3.55 (1H, s, H-19).

¹³C NMR spectrum (δ, ppm): 15.5, 17.9, 22.9, 23.4, 24.6, 25.7, 26.0, 26.1, 26.5, 27.1, 27.6, 28.3, 28.8, 29.4, 29.8, 32.7, 35.7, 36.3, 36.7, 37.3, 40.6, 41.1, 41.7, 42.8, 46.8, 57.9, 71.2 (C-28), 87.5 (C-19), 131.2 (C-10), 141.8 (C-9).

19β**,28-Epoxy-A**-*neo*-5β-methyl-25-nor-18α-olean-9-en-1-one (4). Ozone was passed through a solution of **3** (0.44 g, 1 mmol) in CH₂Cl₂ (25 mL) until the starting material disappeared (TLC monitoring). The solvent was evaporated in vacuo. The product was chromatographed over a column of Al₂O₃ with elution by CHCl₃. Yield 0.27 g (63%), mp 202–204°C, $[\alpha]_D$ +93° (*c* 0.26, CHCl₃), C₃₀H₄₆O₂ (MW 438.7).

PMR spectrum (δ , ppm, J/Hz): 0.79 (3H, s, 29-CH₃), 0.82 (3H, s, 27-CH₃), 0.91 (3H, d, ³J = 6.5, 23-CH₃), 0.93 (1H, m, H_{ax}-12), 0.94 (3H, s, 25-CH₃), 0.94 (3H, s, 30-CH₃), 1.01 (3H, d, ³J = 6.5, 24-CH₃), 1.17 (3H, s, 26-CH₃), 1.24 (1H, m, H_{eq}-21), 1.26 (1H, m, H_{ax}-6), 1.32 (1H, m, H_{eq}-15), 1.39 (1H, m, H-3), 1.41 (1H, m, H_{ax}-16), 1.42 (1H, m, H_{ax}-21), 1.44 (1H, m H_{ax}-22), 1.45 (1H, m, H_{eq}-7), 1.49 (1H, m, H-18), 1.50 (1H, m, H-13), 1.55 (1H, m, H_{eq}-6), 1.56 (1H, m, H_{eq}-16), 1.63 (1H, m, H_{ax}-7), 1.67 (1H, m, H_{eq}-12), 1.69 (1H, m, H-4), 1.95 (1H, m, H_{eq}-22), 1.98 (1H, m, H_{ax}-15), 1.99 (1H, ddd, ²J = 15.0, ³J_{11ax-12ax} = 11.5, ³J_{11ax-12eq} = 3.3, H_{ax}-11), 2.06 (1H, dd, ²J = 18.6, ³J_{2ax-3ax} = 12.3, H_{ax}-2), 2.41 (1H, dd, ²J = 18.6, ³J_{2ex-3eq} = 8.0, H_{eq}-2), 3.49 (1H, dd, ²J = 7.8, H_{anti}-28), 3.56 (1H, d, ⁴J_{19-21eq} = 0.8, H-19), 3.82 (1H, dd, ²J = 7.8, ⁴J_{28syn-22ax} = 1.4, H_{syn}-28), 4.06 (1H, ddd, ²J = 15.0, ³J_{11eq-12ax} = 2.1, ³J_{11eq-12ax} = 2.1, ³J_{11eq-12ax} = 2.1, ⁴J₁₀-11).

¹³C NMR spectrum (δ, ppm): 15.9 (C-27), 18.5 (C-25), 22.8 (C-24), 22.9 (C-23), 23.5 (C-11), 24.5 (C-29), 26.1 (C-26), 26.2 (C-12), 26.4 (C-16), 27.1 (C-7), 28.7 (C-30), 28.9 (C-15), 30.1 (C-4), 32.7 (C-6), 35.2 (C-13), 36.3 (C-20), 36.6 (C-21), 37.1 (C-22), 41.6 (C-14), 42.1 (C-17), 42.4 (C-8), 42.9 (C-2), 42.9 (C-5), 46.6 (C-18), 52.9 (C-3), 71.2 (C-28), 87.9 (C-19), 139.8 (C-10), 156.1 (C-9), 208.1 (1).

The test procedure for *in vitro* antitumor activity of **3** is given at the website www.dtp.nci.nih.gov.

ACKNOWLEDGMENT

The work was supported financially by the RFBR (Project No. 09-03-00831) and a grant from the RF President for State Support of Young Russian Scientists (MK-7360.2010.3). We thank the National Cancer Institute (USA) for determining the antitumor activity of **3**.

REFERENCES

- 1. D. Thibeault, J. Legault, C. Gauthier, S. Lavoie, J. Bouchard, and A. Pichette, Synth. Commun., 40, 213 (2010).
- V. G. Platonov, A. D. Zorina, M. A. Gordon, N. P. Chizhov, L. V. Balykina, Yu. D. Mikhailov, D. R. Ivanen, T. K. Kvi, and A. G. Shavva, *Khim.-farm. Zh.*, 2, 42 (1995).
- 3. O. B. Flekhter, L. R. Nigmatullina, L. A. Balina, L. T. Karachurina, F. Z. Galin, F. S. Zarudii, G. A. Tolstikov, E. I. Boreko, N. I. Pavlova, S. N. Nikolaeva, and O. V. Savinova, *Khim.-farm. Zh.*, **36**, No. 9, 26 (2002).
- 4. F. N. Lugemwa, F. Y. Huang, M. D. Bentley, M. J. Mendel, and A. R. Alford, *J. Agric. Food Chem.*, **38**, 493 (1990).
- 5. M. P. Sokolyanskaya, N. I. Medvedeva, O. B. Flekhter, G. V. Ben'kovskaya, A. G. Nikolenko, and F. Z. Galin, *Agrokhimiya*, **12**, 48 (2005).
- 6. W. Dehaen, A. A. Mashentseva, and T. S. Seitembetov, *Molecules*, 16, 2443 (2011).
- 7. D. M. Doddrell, D. T. Pegg, and M. R. Bendall, J. Magn. Reson., 48, No. 15, 323 (1982).
- G. Bills, A. Dombrowski, S. A. Morris, O. Hensens, J. M. Liesch, D. L. Zink, J. Onishi, M. S. Meinz, M. Rosenbach, J. R. Thompson, and R. E. Schwartz, *J. Nat. Prod.*, 63, No. 1, 90 (2000).
- M. C. Alley, D. A. Scudiero, P. A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker, and M. R. Boyd, *Cancer Res.*, 48, 589 (1988).
- 10. M. R. Grever, S. A. Schepartz, and B. A. Chabner, Semin. Oncol., 19, 622 (1992).
- 11. M. R. Boyd and K. D. Paull, Drug. Dev. Res., 34, 91 (1995).
- 12. R. H. Shoemaker, *Nature Rev.*, **6**, 813 (2006).
- 13. K. Nagayama, A. Kumar, K. Wuthrich, and R. R. Ernst, J. Magn. Reson., 40, No. 2, 321 (1980).
- 14. W. P. Aue, E. Bartholdi, and R. R. Ernst, J. Chem. Phys., 64, No. 5, 2229 (1976).
- 15. A. Bax and G. A. Morris, J. Magn. Reson., 42, No. 3, 501 (1981).
- 16. N. I. Medvedeva, O. B. Flekhter, O. S. Kukovinets, F. Z. Galin, G. A. Tolstikov, and I. Baglin, *Izv. Akad. Nauk, Ser. Khim.*, **4**, 804 (2007).
- 17. G. R. Pettie, B. Green, and W. J. Bowyer, J. Org. Chem., 26, 2879 (1961).
- J. A. R. Salvador, R. M. A. Pinto, R. C. Santos, C. L. Roux, A. M. Beja, and J. A. Paixro, *Org. Biomol. Chem.*, 7, 508 (2009).